Indecomposable decomposition of tensor products of modules over Drinfeld doubles of Taft algebras
نویسندگان
چکیده
منابع مشابه
INDECOMPOSABLE DECOMPOSITION OF TENSOR PRODUCTS OF MODULES OVER THE RESTRICTED QUANTUM UNIVERSAL ENVELOPING ALGEBRA ASSOCIATED TO sl2
Abstract. In this paper we study the tensor category structure of the module category of the restricted quantum enveloping algebra associated to sl2. Indecomposable decomposition of all tensor products of modules over this algebra is completely determined in explicit formulas. As a by-product, we show that the module category of the restricted quantum enveloping algebra associated to sl2 is not...
متن کاملamenability of banach algebras
chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...
15 صفحه اولRelative Tensor Products for Modules over von Neumann Algebras
We give an overview of relative tensor products (RTPs) for von Neumann algebra modules. For background, we start with the categorical definition and go on to examine its algebraic formulation, which is applied to Morita equivalence and index. Then we consider the analytic construction, with particular emphasis on explaining why the RTP is not generally defined for every pair of vectors. We also...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولConnections over Twisted Tensor Products of Algebras
Motivated from some results in classical differential geometry, we give a constructive procedure for building up a connection over a (twisted) tensor product of two algebras, starting from connections defined on the factors. The curvature for the product connection is explicitly calculated, and shown to be independent of the choice of the twisting map and the module twisting map used to define ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2017
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2017.01.007